
Evaluation of Rapid Context Switching on a CSRC Device

David I. Lehn, Kiran Puttegowda, Jae H. Park, Peter Athanas, and Mark Jones
Bradley Department of Electrical and Computer Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0111

Abstract

One property that distinguishes reconfigurable com-
puting from rapid prototyping is the ability to config-
ure the computational fabric on-line while an applica-
tion is running. Conventional reconfigurable comput-
ing platforms utilize commodity FPGAs, which typi-
cally have relatively long configuration times. Shrink-
ing the configuration time down to the nanosecond re-
gion opens possibilities for rapid context switching and
virtualizing the computational resources. An experi-
mental context switching FPGA, called the CSRC, has
been created by BAE Systems, and gives researchers
the opportunity to explore context-switching applica-
tions. This paper presents results obtained from con-
structing both control-driven and data-driven context
switching applications on the CSRC device, along with
unique properties of the run-time and compile-time en-
vironment.

1 Introduction

Fast FPGA configuration switching has emerged as
a possible solution to a number of reconfigurable com-
puting issues. The particular FPGA-like devices store
multiple configurations called contexts in different sets
of internal RAM. Each programmable part of the de-
vice is controlled by multiple RAM units. Global con-
text lines act as addresses for these RAM units to
activate a context. Any one device context can be ac-
tive at a time and activating another context can be
accomplished as fast as one clock cycle. This config-
uration activation process is known as context switch-
ing. This technique enables a number of possibilities
not achievable with traditional reconfigurable logic in-
cluding virtual hardware, simplified routing and lower
power dissipation.

Commodity FPGAs have relatively long configura-
tion times [1], and applications that use Run-Time
Reconfiguration (RTR) on FPGAs often suffer from
this. Any configuration delay comes at the cost of
valuable computation time. Context switching can
dramatically reduce this time by overlapping config-
uration loading with computation.

In an application that requires only a part of the

computational logic at a time, there is the possibility
of sharing the computational resources. In a context
switching device routing is shared between contexts;
hence routing can be simpler. Additionally access to
input and output pins may be simplified when there is
no need to route around currently unused logic. The
need for I/O multiplexing may also be eliminated in
applications sharing I/O pins among modules that are
mapped to different contexts. The BAE-Systems Con-
text Switching Reconfigurable Computer (CSRC) [2]
device, an experimental context switching FPGA, will
serve as the device exercised in this paper.

A brief background on context switching hardware
and its implementation used here will be discussed in
Section 2. Section 3 will be an explanation of the run-
time environment used to support the use of context
switching hardware. Sample applications will then be
discussed in Section 4, the results of which will be dis-
cussed in Section 5. Conclusions arrived upon based
on these results will be presented in Section 6.

2 Background

WASMII [3] was the first system proposed that was
conceptualized as a multi-context device. It is a data
driven computational system that uses the concept of
virtual hardware to visualize an infinite hardware for
applications. WASMII was later implemented [4] on
Dynamically Reconfigurable Logic Engine (DRLE) a
multi-context device developed by NEC. During the
same period the concept of Dynamically Configurable
Gate Array (DPGA) [5] was proposed by Bolotski, et.
al. which also talked about context swapping within
an FPGA. In a later paper, DeHon proposed plac-
ing DPGAs on the same die as a normal processor
to act as a reconfigurable accelerator [6]. Xilinx filed
a patent on the multi-context programmable device
in 1995 [7][8]. The patented device has an architec-
ture similar to the Xilinx XC4000E [1] with multiple
configuration planes. The reconfigurable communica-
tion processor [9] developed by Chameleon systems,
Inc. has a reconfigurable fabric with two configurable
planes; one for executing while the other configures the
next part of the application. Scalera and Vásquez pre-
sented the Context Switching Reconfigurable Comput-

ing (CSRC) device in [2]. This device has been used
to implement a prototype research platform called the
Reconfigurable Computing Module (RCM).

Above contributions do not give a detailed study
of context switching from a system perspective. This
paper discusses the application level and system level
issues in a multi-context programmable system. The
work presented here provides a study of context
switching in various modes of operation from control
oriented switching to data oriented switching between
contexts.

2.1 CSRC micro architecture

C
SL

A

C
SL

A

C
SL

A

C
SL

A

C
SL

A

C
SL

A

Level 3 routingPIPE

Level 2
routing

Level 1
routing

Figure 1: CSRC architecture

Figure 1 taken from [2], shows the architecture of
the device. The CSRC device consists of 16-bit wide
data pipes each consisting of context switching logic
arrays (CSLAs). A single CSLA consists of context
switching logic cells (CSLC) and is capable of pro-
cessing two 16-bit words to produce a 16-bit result.
The result of one CSLA is available as input to two
adjacent CSLAs in the pipe. Thus, a pipe can be used
as a data path, where data flows in both directions.

The CSLC is the heart of computation for the
CSRC device. It consists of a four-input lookup ta-
ble (CSLUT), a context switching flip-flop (CSFF), a
tri-state buffer and the carry logic. Each configurable
resource in the CSLC along with each routing resource
has four configuration bits; a single bit is selected as
the current configuration. Each CSLC has a private
register for each context and a public register. Dur-
ing context switch, the CSLC value is stored in public
register if it is to be shared, else kept in a private
register.

The prototype CSRC consists of eight pipes stacked
one above the other with eight CSLAs each. Each
CSLA has sixteen CSLCs; for a total of 1k CSLCs.
The bitstreams for the CSRC FPGAs are downloaded
serially. The user is required to specify which context
is being loaded and then supply a clock and the con-
figuration data. A context can be programmed when
another context is active.

2.2 Reconfigurable Computing Module
(RCM)

Input
FIFO

Output
FIFO

CSRC
B

CSRC
A

Xilinx
4085

Bus

Power PC

750 CPC700
PCI BridgeL2

Cache
PPC

Memory

CSRC
Memory

CSRC
Memory

36 36

12 12

48

36 36

48

144

PCI Bus

28 16 16 28 16 16

Figure 2: RCM platform architecture

The RCM board designed by Sanders (now BAE
Systems) is a PCI card that houses the CSRC chips
and other support hardware used to demonstrate con-
text switching. The basic architecture is shown in Fig-
ure 2. It consists of a Power PC 750 microprocessor.
An IBM CPC700 device provides connection between
the Host Machine and the processor through the PCI
bus. It also provides the secondary cache and memory
control.

The RCM contains two CSRC devices with private
memory. The two CSRC devices are directly con-
nected with 144 lines and there are 48 lines from each
CSRC to a support FPGA. The processor to CSRC
communication is primarily through the processor bus
connected to 36-bit wide FIFOs. The assumed data
flow is from the processor through the CSRC-A to
CSRC-B and back to the processor. The status flags
of the FIFOs are available as inputs to the FPGA that
makes it available to the processor and the CSRCs.
The Xilinx XC4085 support FPGA is intended to pro-
vide a variety of support functions. The FPGA con-
tains the ability to at least receive interrupt requests
from the host processor, manage FIFO control flags,
program the CSRC devices, and serve as a DMA con-
troller to move data to and from the CSRC devices.

3 Runtime Environment

Support for different context switching applications
requires extensive runtime support. The RCM board
has a runtime environment that is specific to its hard-
ware. The PowerPC on the board allows flexible pro-
grams to be run close to the context switching hard-
ware. Figure 3 shows the software levels used for the
RCM runtime environment.

Two methods of communicating with the board are
available: a low bandwidth serial line, used mainly for
debugging, and memory mapped reads and writes over

Application

RCM Board Resources
(FPGA/CSRCs/FIFOs/mem/...)

RCMOS

Low Level API

Raw Access API

High Level API

Figure 3: Runtime environment stack

the PCI interface. Application interfaces were built on
top of the memory-based communication.

3.1 Host Application Programming In-
terfaces (API)

As shown in Figure 3 an application accesses the
hardware resources through either a high level API,
low level API, or a combination of each. The low
level API is implemented using the “Raw Access API”
which provides only basic services:
• open/close board, and
• read/write memory mapped areas

The raw API makes no assumptions regarding the
hardware configuration. It does not access special
features of any software running on the PowerPC or
any features of configurations loaded in the CSRCs
or FPGA. The initial setup of software on the Pow-
erPC must be done with this API (accessed through
a higher level API) and board firmware. The memory
controller on the board is configured to map memory
ranges to various devices. This is used to provide some
direct access to the FIFOs and FPGA.

All complex communication and functionality is im-
plemented with a memory-based handshaking proto-
col with software on the PowerPC (described in Sec-
tion 3.2). The “Low Level API”, as shown in Figure 3,
uses this protocol to provide transparent access to the
hardware from the host. It consists of a number of
features:

• PowerPC configuration,
• FPGA configuration,
• CSRC configuration (basic and caching),
• CSRC context switching, and
• data streaming.

For the RCM board this low level API exists in two
forms. One is a basic C API. The other is through the
ACS API [10]. The C API is suitable for high speed
direct access. The ACS API allows the board to be
accessed in the same uniform method as other ACS
supported devices in a distributed dynamic network
of heterogeneous reconfigurable hardware. In Figure 3
both these APIs are represented by the “Low Level
API” layer.

The Xilinx FPGA is used to control many signals on
the board. The CSRCs clock and reset, FIFO status
and control, context switching control, programming
control, and many CSRC connections all go through
this FPGA. The low level API makes very few as-
sumptions about how all this control is implemented;
it simply memory maps the FPGA with address, data,
and control lines. Specific control is up to either the
application programmer or another layer of API.

Applications can also take advantage of a “High
Level API”. This API provides an object oriented
view of the board representative of its physical parts.
This API includes much of the functionality needed
to take full advantage of the hardware. This layer
is based on specific features of the FPGA configura-
tion as well as the low level API features implemented
in the basic Operating System (OS) running on the
PowerPC called the RCMOS. Applications using this
higher level API are isolated from many of the de-
tails of register access and bit manipulation. Complex
functionality involving many low level API calls can
be wrapped up into an easier to use interface.

3.2 RCMOS

The PowerPC on the RCM board is used to imple-
ment many of the low level API functions in an effi-
cient manner. Programming of the configurable hard-
ware resources involves bit manipulation that would
be too slow over the PCI bus. Loading the configura-
tions into the board memory and letting software in
the PowerPC do the work is more efficient. Many of
the CSRC operations such as control-driven context
switching and clocking are also more efficiently imple-
mented closer to the hardware than across the PCI
bus.

Host Memory

RCM Memory

Device Contexts

Mass Storage (disk, net, ...)

SpeedC
ap

ac
ity

Figure 4: Configuration caching hierarchy

Context switching can be seen as part of a configu-
ration caching hierarchy as shown in Figure 4. At the
lowest level, configurations are stored in mass stor-
age. This storage can be persistent physical media
such as a host hard disk or remote storage accessed
over a network. Access speed increases and capacity
decreases as the configurations move from mass stor-
age to host memory to RCM board memory to the
hardware contexts. If any level cannot hold the num-
ber of configurations required for an application they
are stored in the next higher capacity level and loaded
on demand. For such applications caching affects the
average switching time.

For board level configuration caching, the host uses
an API that stores configurations on the board via
RCMOS. The application uses high level functionality
which requests a certain configuration to be loaded.
The RCMOS handles the details of keeping track of
which configurations are loaded into which contexts in
the device. If the requested configuration is currently
loaded in a context, then switching is a high speed
hardware operation. If the requested configuration is
not currently in a context, then the RCMOS uses stan-
dard replacement algorithms to determine which con-
text it will replace with the requested configuration.
This could be improved by giving hints to what future
requests may be so that RCMOS could load contexts
as a background task before they are needed.

3.3 Hardware

The Xilinx XC4085 on the RCM board is used to
implement control logic for applications. This logic
can be either hard coded for a specific task or have
some flexibility controllable from the host application.
One flexible approach is a host programmable Finite
State Machine (FSM). This is easily implemented as
a table based design. An abstract description of the
FSM is converted by the high level API into a memory
based table format. This is then loaded into the FPGA
with a protocol of low level register writes. This al-
lows flexible application control with the advantage of
moving logic to high speed hardware. The prototype
CSRC parts have limited logic and routing resources
which require some applications to depend on this ex-
ternal control logic.

4 Applications

The context switching hardware system can be uti-
lized in a variety of ways for building applications.
The hardware system, along with the run-time envi-
ronment, can efficiently implement applications that
are either data-driven or control-driven run-time re-
configurable. Customized applications can make full
use of the available resources. Application framework
environments can also target such a system. One such
framework is Janus [11]

4.1 Application Control

CSRC A

CSRC B

Power PC
FSM

FPGA
Host PC

Increasing Control Latency

Figure 5: Context switching control routes

Figure 5 shows the paths on the RCM board used
for context switching control. The actual route is ap-
plication specific. Signals from the CSRCs may need
to travel back to logic on the host or anywhere in
between. Applications with user input require the full
control path from host to CSRC. Applications can im-
prove performance by moving appropriate logic closer
to the CSRCs. One possibility is to locate FSM struc-
tures on the FPGA. Data are input from the CSRCs
to the FSM which will control switching signals. It
is also possible that the CSRCs can control their own
context switching and not require any external logic.

The latency involved in a context switch is directly
related to the number of layers that signals have to
pass through. If the CSRCs require host processing for
a decision the latency could be large. For debugging
this communication can be used to stall the CSRC
logic. If a switching decision is made in logic close
to the CSRCs, then the switch is done fairly fast. On
the RCM board this switching time is as low as 1 clock
cycle for internal CSRC switching and 2 clocks if ex-
ternal logic is required.

Examples of applications making context switching
decisions in different locations are given in the follow-
ing sections.

4.2 Motion Detection Algorithm

FIFO
CSRC A CSRC B

FIFO

Low pass

Filter
Difference

Through
Pass

Generator
Image
Binary

Video Source

Video Capture

Crop box generator

Generator
Cropped ImageH

os
t M

ac
hi

ne

RCM

Figure 6: Image processing application

The motion detection algorithm implementation
demonstrates the control of CSRC contexts through
the host programmable Finite State Machine. The
motion detection algorithm [12] consists of capturing
an image, processing it and sending out a cropped im-
age where there is motion. Such an application is use-
ful for power critical remote sensing motion detection.
The algorithm mapped onto the system is shown in
Figure 6. The image is captured by the Host machine
and passed to the RCM board through the FIFOs.
The four parts of the algorithm are implemented as
four different contexts in the CSRC. The FSM con-
trols the switching of active contexts.

The video stream consists of 160 × 120 8-bit gray
scale image sequences. The image data is stored in

the sharable memory between the host PC and the
PowerPC and is transferred into the CSRC through
the FIFO with two pixels per word.

The difference block enhances the portions of the
frame that have changed due to moving objects. It
generates a difference image from two sequential im-
ages. Denote each image frame of the video stream as
Ii, where i is the sequence index of the video. The pre-
vious image, Ii−1, is stored in the CSRC A memory.
The current image, Ii, is streamed through the input
FIFOs. The difference image, |Ii−Ii−1|, is stored back
to the CSRC A memory. The CSRC memory shares
the data between the contexts.

Ideally, the difference image should not have any
spot noise and only the moving object on the im-
age should be highlighted as long as the back-
ground remains constant. However, many factors like
wind, ground vibration, etc generate small background
changes. A low-pass filter implemented as a 4× 4 av-
eraging filter eliminates this spot noise and smooths
out the image.

The difference block will also produce non-zero pix-
els throughout the difference image due to intensity
variations between frames. The pixel differences are
compared with a threshold and non-zero pixels due
to intensity variations are detected. Ideally a dy-
namic threshold value should have been generated.
Due to the lack of resources on the prototype CSRC, a
static hard-wired threshold is used instead of calculat-
ing the threshold. The binary image generator block
compares the filtered image with the threshold and
generates a binary image with a ‘1’ for pixels above
the threshold and a ‘0’ for those below the threshold.
It streams out the binary image through the output
FIFO. This binary image has only the objects that are
moved without the spot noise and disturbances due to
intensity variations.

This image can be used to clip part of the original
image frame where there is movement.

4.3 Video Filter

A variation on the motion detection application is
a host-driven video processing application. A continu-
ous video stream is processed by filters stored in con-
texts. A user request from the host causes the con-
text to switch. This enables single-cycle algorithm
changes. If more filters are needed than available con-
texts, then some cache manipulation may need to take
place. The loading of new filters into contexts that
are currently inactive take place while another filter
is running. This allows unlimited “virtual hardware”
filters. Simple filters have been implemented on the
CSRCs that includes basic passthrough, the motion
detection difference filter and a delay filter.

CSRC B

Enigma
Encryptor 2 Encryptor 3

Enigma

Encryptor 0
Enigma

Encryptor 1
Enigma

FPGA

Controller

FIFO
OutputCSRC A

FIFO
Input

Figure 7: The enigma application

4.4 Enigma Encryptor

This application is a demonstration of the CSRC for
data-driven network processing in which the context
to be made active is dependent upon the data being
processed. The application is a demonstration of sim-
ple encryption and decryption of network packet for
multiple channels. As the resources on the prototype
CSRC are limited, a simple Enigma-like encryption
scheme was selected.

The Enigma Machine [13] was based on a system
of three rotors that substituted cipher text letters for
plain text letters. A letter to be processed is sent
through the first rotor, shifting it according to its
present setting. The new letter passes through the
second and third rotor, where it would be substituted
according to their settings. This letter is bounced off
a reflector, and back through the three rotors in re-
verse order. As the plain text letter passes through
the first rotor, the first rotor would rotate one po-
sition. The other two rotors would remain stationary
until the first rotor rotates 26 times (one full rotation).
Then the second rotor would rotate one position. The
third rotor would rotate one position when the sec-
ond completes a full rotation. To decode the message,
the rotors are set to the initial settings, and then the
cipher text is put through the machine.

This concept was used to build an encryptor for
bytes. Each rotor has 28 = 256 slots. The key and the
shifting effects of the rotor are realized by adding the
key and offset to the byte and obtaining its modulus
for 256. The encryptor implementation is pipelined, so
returning data through the rotors is implemented by
repeating the rotors in the reverse order. The shifting
of the repeated rotors is timed accordingly to match
the shifting of the original rotor. The obtained byte
is scrambled nibble-wise using two 4 × 4 tables. The
table entries represent the actual rotor settings.

Using the available RCM board, the following sys-
tem was implemented. FIFOs are used to stream data
into the processing elements. The processing elements
consist of the two CSRCs and the support FPGA.
Output FIFOs are used to stream data out of the
processing elements. The system design partition is
shown in Figure 7.

Each of the four contexts on the CSRC B contain an
enigma encryptor with a particular rotor configuration
and key. Each of these individual rotor configurations

is used for each channel. The CSRC A has a controller
context that reads the header of the packet, deter-
mines the intended channel, and the packet length.
The data in the header indicates the intended channel
and signals the support FPGA to set the particular
context on the CSRC B. CSRC A’s controller con-
text now acts as a passthrough and down-counts the
number of bytes. When the counter reaches zero the
controller context resets its controller and waits for
the next packet to arrive.

If each of the contexts process data for a particular
channel, this application demonstrates the data-driven
virtual hardware implementation for a network with
four channels. With the hardware cache it can be
expanded to any number of channels.

5 Results
The run-time environment and the applications

were used to analyze the costs and benefits of context
switching for run-time reconfiguration. The results of
the analysis are presented in the following sections.

5.1 Area
The strongest argument in favor of multi-context

devices is silicon reusability by emulating infinite hard-
ware. To assess this claim, a study of area requirement
for the applications was performed.

Table 1: Area requirement for each application. Sec-
ond column shows area requirement for each context
of application in a multi-context device

Application 4-context 1-context
impl. impl.

Motion Difference 783.0
Detection Filter 1188.8 2055.0
Algorithm Bin. img. gen. 253.3

Enigma0 1331.8
Enigma Enigma1 1331.8 5245.0

Encryption Enigma2 1331.8
Enigma3 1331.8

Table 1 shows the gate equivalent areas obtained
from SynplifyTMfor each contexts of the applications
implemented in a single context and a four-context
device. A device with an equivalent gate count of the
highest number will be required for that particular ap-
plication. Motion detection application can be imple-
mented in a three context device with a minimum of
1188.8 equivalent gates without incurring reconfigura-
tion delay. But with a single context, the application
requires a device with 2055.0 equivalent gates. For the
Enigma encryption a four-context implementation re-
quires at least 1331.8 equivalent gates for each of the
enigma engines. In a single-context implementation of
all four enigma engines bound together, the applica-
tion requires at least a 5245.0 equivalent gate device.

With such an approach the multi-context imple-
mentation of the motion detection algorithm will have
bitstreams for three contexts of a 1188.8 equivalent
gate device and the single context will have bitstream
for a single 2055.0 equivalent gate context. In the
enigma encryption application storage requirement for
the bitstreams scale well with the number of contexts.
With this observation it seems that context switching
might lead to larger bitstreams. But for bigger ap-
plications that require run-time reconfiguration, the
multi-context approach is scalable better than a single
context approach. Suppose more contexts are added
to the image processing algorithm implementation,
bitstream size scales at 1188.8 equivalent gate steps
in a multi-context device rather than 2055.0 equiva-
lent gate steps.

It can be inferred that for applications that can be
partitioned equally among all the available contexts,
resource requirement will scale well with the number
of contexts on the device. It should be noted that in
this study the silicon real estate overhead of adding
more contexts is not considered quantitatively.

5.2 Switching Time
For applications requiring more than the available

number of contexts in the device, the CSRC configu-
ration cache, discussed in Section 3.2, can be used to
store additional contexts. This, along with the host
memory, implements an effective virtual hardware en-
vironment. The context switch time in such a system
would have a significant latency if the context is not
available on the device. Assuming that each appli-
cation context has an equal probability of being re-
quested, an expression for the average context switch-
ing time was derived:

tavg =
{

ts if 1 < n ≤ k
psts + pctp if n > k

(1)

where;
tavg average switching time
ts context switch time
tp context program time
k number of device contexts
n number of application contexts
ps probability that context is on device, k−1

n−1

pc probability of a reconfigure, 1− k−1
n−1

The variation of the average context switch time
with numbers of application contexts for different
number of device contexts is plotted in Figure 8. The
plot shows that for an increase in number of device
contexts(k) from one to four and four to eight there
is a tremendous improvement in the average recon-
figuration time(tavg). Adding a new context would
involve adding new RAM for context storage, multi-
plexers and the necessary routing for each configurable
resource. Out of these RAM takes up more area. So
the VLSI area in adding new contexts increases lin-
early. For more device contexts diminishing returns

0
ts

tp

0 5 10 15 20 25 30

t a
vg

n

k = 1
k = 2
k = 4
k = 8
k = 12
k = 16

Figure 8: Average context switch time

in terms of reduced reconfiguration time is obtained.
It can also be seen that a match between n and k re-
sults in shorter average reconfiguration time(tavg). For
high number of application contexts the curves come
closer. This implies that for a lot of application con-
texts the advantage of having more device contexts to
reduce average switching time is smaller.

With locality-of-reference for the switch request,
the probability that the context requested is on the
device will be higher; thus the average reconfiguration
time would be smaller than that observed in the plot.
This locality-of-reference depends on the applications
and the way they are programmed. There is also the
possibility of configuring a context in the background
while another context is processing data. This would
reduce the effective context program time and hence
the average reconfiguration time in applications that
can anticipate the next context required.

6 Conclusions

The described system achieves context switching
with various degrees of speed and controllability. This
feature, along with the hardware cache, implements an
effective hierarchy of virtual hardware. Control of all
these requires complex external support such as that
provided by the Xilinx support FPGA in the system.

This type of system allows a particular implemen-
tation in an effectively smaller area on the FPGA than
a system with a single context. This has several posi-
tive effects on the overall system design. The routing
inside the chip is reduced as the effective area to which
a design is mapped is smaller; thus interconnect de-
lays are smaller. It also saves power as only the active
part of the design is running, while rest of the design
is simply stored on the SRAM bits and memory.

References

[1] Xilinx Inc., The Programmable Logic Data Book,

San Jose, CA, 1999.

[2] S. M. Scalera and Jóse R. Vázquez, “The de-
sign and implementation of a context switch-
ing FPGA,” in Proceedings of IEEE Symposium
on Field-Programmable Custom Computing Ma-
chines, April 1998.

[3] Xiao-ping Ling and H. Amano, “WASMII: a data
driven computer on a virtual hardware,” in Pro-
ceedings of IEEE workshop on FPGAs for custom
computing machines, April 1993.

[4] Y. Shibata, et. al., “A virtual hardware system
on a dynamically reconfigurable logic device,” in
Proceedings of IEEE symposium on FPGAs for
custom computing machines, April 2000.

[5] A. DeHon, “DPGA Utilization and Application,”
in MIT Artificial Intelligence Laboratory, Transit
Note 129, September 1995.

[6] A. DeHon, “DPGA-Coupled Microprocessors:
Commodity ICs for the Early 21st Century,” in
Proceedings of IEEE Workshop on FPGAs for
custom computing machines, 1994, pp. 31–39.

[7] Xilinx, “Time multiplexed programmable logic
device,” July 1997, Patent no. 5646545.

[8] S. Trimberger, D. Carberry, A. Johnson and J.
Wong, “A Time-Multiplexed FPGA,” in Proceed-
ings of IEEE symposium on FPGAs for custom
computing machines, April 1997.

[9] Chameleon Systems, Inc., “CS2000 Reconfig-
urable Processor,” 2000, CS2000 Advance prod-
uct information.

[10] J. Scott C. Twaddle M. Yaconis K. Yao
P. Athanas M. Jones, L. Scharf and B. Schott,
“Implementing an API for distributed adap-
tive computing systems,” in Proceedings of the
IEEE International Conference on Communica-
tions, April 1999, pp. 222–230.

[11] R. D. Hudson, Architecture-Independent Design
for Run-Time Reconfigurable Custom Comput-
ing Machines, Ph.D. thesis, Virginia Polytechnic
Institute and State University, Blacksburg, VA
USA, August 2000.

[12] N. Vaswani and R. Chellappa, “Best view selec-
tion and compression of moving objects in IR se-
quences,” in Proceedings of International Confer-
ence on Acoustics, Speech, and Signal Processing
Proceedings, Salt Lake City, Utah, 2001.

[13] D. Museum, “Enigma encryption ma-
chine,” http://www.deutsches-museum-
bonn.de/ausstellungen/meisterwerke/2 3enigma/
enigma e.html.

	Introduction
	Background
	CSRC micro architecture
	Reconfigurable Computing Module (RCM)

	Runtime Environment
	Host Application Programming Interfaces (API)
	RCMOS
	Hardware

	Applications
	Application Control
	Motion Detection Algorithm
	Video Filter
	Enigma Encryptor

	Results
	Area
	Switching Time

	Conclusions

