
The Journal of Supercomputing, 26, 239–257, 2003

2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Context Switching in a Run-Time Reconfigurable
System

KIRAN PUTTEGOWDA kiran@vt.edu

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0111

DAVID I. LEHN dlehn@vt.edu

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0111

JAE H. PARK jhpark@vt.edu

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0111

PETER ATHANAS athanas@vt.edu

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0111

MARK JONES mtj@vt.edu

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0111

Abstract. A distinguishing feature of reconfigurable computing over rapid prototyping is its ability to

configure the computational fabric on-line while an application is running. Conventional reconfigurable

computing platforms utilize commodity FPGAs, which typically have relatively long configuration times.

Shrinking the configuration time down to the nanosecond region opens possibilities for rapid context

switching and virtualizing the computational resources. An experimental context-switching FPGA, called

the CSRC, has been created by BAE Systems, and gives researchers the opportunity to explore context-

switching applications. This paper presents results obtained from constructing both control-driven and

data-driven context switching applications on the CSRC device, along with unique properties of the run-

time and compile-time environment.

Keywords: configurable computing, FPGA, run-time reconfiguration, virtual hardware, context

switching, multi-context

1. Introduction

The configuration time for an FPGA is the amount of time required to configure the
device. Traditional FPGAs have relatively long configuration times [1], and
applications that use run-time reconfiguration (RTR) on FPGAs often suffer from
this effect. For applications that depend upon on-line modifications, any
configuration delay increases the overall computation time. At any instant of
application execution the computational logic implemented for the application may

not be used completely. In an application that requires only a part of the
computational logic at a given time, there is the possibility of time sharing
computational resources.
The devices used to share hardware store multiple configurations in different sets

of internal RAM as shown on Figure 1. Such configurations are called Contexts.
Each programmable part of the device is controlled by multiple RAM bits, and only
one RAM bit configures the programmable unit at a given time. So the device holds
more than one configurations on the chip and closer to the programmable unit.
Global context lines act as addresses for the RAM bits to activate a particular
context. A single on-chip context is activated at a given time. Any other context can
be activated in as fast as one clock cycle. This internal configuration activation
process is known as context switching. Devices with these properties are known as
multi-context devices. Systems with these properties have a number of advantages
over traditional programmable logic like ability to implement efficient virtual
hardware, simplified routing, and higher data bandwidth.
The experimental platform used in this research is the reconfigurable computing

module (RCM) that enables the technique of context switching reconfigurable
computing. A detailed description of the platform is given in Section 2.1. This board
has two experimental multi-context devices called the context switching reconfigur-
able computer (CSRC).
The RCM board is controlled by the host via a basic application programming

interface (API). This API communicates with a basic operating system running on an
onboard PowerPC, which handles communication with the host API and off loads
some of the processing work from the host to the RCM board. To provide control
for context switching applications without host intervention it is necessary to put
control logic closer to the context switching hardware. On the RCM there is a Xilinx
XC4085 FPGA [1] that can be used for this purpose. The FPGA is used for
miscellaneous control functions for the system and contains a fully host-
programmable table-based finite state machine (FSM) for controlling the applica-
tions.
Reconfiguration in an RTR system can be data-driven or host-driven. Dynamic

recon- figuration driven by the data generated while processing online is called data-

Figure 1. Concept of context switching.

240 PUTTEGOWDA ET AL.

driven RTR. Static reconfiguration by the host machine controlling the reconfigur-
able hardware is known as host-driven RTR.
To demonstrate the application of context switching in such RTR systems three

applications will be presented. The first application shows host-driven context
switching with a demonstration of basic video processing. The second application
uses hardware-driven context switching. This can be used to switch between known
contexts sequentially or used in a data-driven reconfigurable application. A motion
detection algorithm is discussed which can be broken into parts to be loaded on
different contexts. These are activated in sequence as virtual hardware by a hardware
based programmable state machine. The third application shows purely data driven
context switching. It uses an implementation of the Enigma encryption algorithm to
process data streams. Each stream is tagged for a certain user and each context
contains optimized configurations for processing each user stream.
A brief background on context switching hardware and its implementation used

here will be discussed in Section 2. Section 3 will be an explanation of the run-time
environment used to support the use of context switching hardware. Sample
applications will then be discussed in Section 4. The concepts for evaluating the
performance is presented in Section 5, the results of which will be discussed in Section
6. Conclusions arrived upon based on these results will be presented in Section 7.

2. Background

Hardware systems that swap configurations into and out of a programmable device
during runtime are termed virtual hardware. Approaches to words achieving this
with minimum latency has been primarily through partial reconfiguration and
context switching. Xilinx developed XC6200 FPGA [2] a device in which the
configuration registers are memory-mapped. This provided many features such as
partial reconfigurability and the ability to configure bus-mapped registers on the
array. This device was used to develop a number of RTR systems using the virtual
hardware model. Brebner introduced the swappable logic unit (SLU) [3] for virtual
hardware that was analogous to pages or segments in virtual memory systems. In
terms of hardware the SLU is a logic unit with fixed size and fixed interfacing signals.
Software would view the SLU as a function, sub-routine or operations provided by
an object class. The operating system supplies the routing between SLUs. This work
proposes to make the capabilities of SLUs available as library functions that can be
called from software programs.
The concept of virtual hardware was actually introduced by Ling and Amano [4].

The work was based on a multi-context device. The terms hardware page for the
stored context and preloading for the process of loading a context before it is
actually used for computation were introduced by Ling and Amano [4] in this work.
WASMII [4] is a data driven computational system that uses virtual hardware
concepts based on a multi-context device to visualize an infinite hardware for
applications. WASMII was later implemented on a multi-context device called the
dynamically reconfigurable logic engine (DRLE) developed by NEC [5]. During the
same period the concept of a dynamically configurable gate array (DPGA) [6] was

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 241

proposed by Bolotski et al. [19] who also discussed context swapping within an
FPGA. DPGA [6] was a similar approach towards rapid RTR. The DPGA system
programs several different sets of configuration RAMs for each logic function. The
appropriate configuration set could be selected at run-time using global signal wires
to select the appropriate context at any given time. Logic values for the function
would be taken from a small RAM, and the global context control wires would act
as the address used for that RAM. In a later paper, reconfigurable accelerators built
by placing DPGAs on the same die as a normal processor [7] were presented. Xilinx
[8, 9] filed a patent on the multi-context programmable device in 1995 and presented
the work as a time-multiplexed FPGA [10]. The patented device has an architecture
similar to the Xilinx XC4000E [1] with multiple configuration planes. The
reconfigurable communication processor [11] developed by Chameleon Systems,
Inc. has a reconfigurable fabric with two configurable planes; one for executing while
the other configures the next part of the application. Scalera and Vásquez presented
the context switching reconfigurable computing device in Scalera and Vázquez [12].
This device has been used to implement a prototype research platform called the
reconfigurable computing module.

2.1. Reconfigurable computing module (RCM)

The RCM board designed by Sanders (now BAE Systems) is a PCI card that houses
the CSRC chips and other support hardware used to demonstrate context switching.
The basic architecture is shown in Figure 2. It consists of a Power PC 750
microprocessor.

Figure 2. The RCM board block diagram.

242 PUTTEGOWDA ET AL.

The RCM board contains two CSRC devices with private memory. The two
CSRC devices are directly connected to each other with 144 wires and there are 48
wires from each CSRC to a support FPGA. The processor to CSRC communication
is primarily through the processor bus connected to 36-bit wide FIFOs. The assumed
data flow is from the processor through the CSRC A to CSRC B and back to the
processor. The Xilinx XC4085 support FPGA is intended to provide a variety of
support functions. The FPGA contains the ability to receive interrupt requests from
the host processor, manage FIFO control flags, program the CSRC devices, and
serve as a DMA controller to move data to and from the CSRC devices.

2.2. CSRC architecture

The context switching reconfigurable resources available on the RCM board is the
context switching reconfigurable computer [12]. FPGAs approach higher speedups
when implementing algorithms with deep pipelines. However, generating pipeline
control signals, implementing state machines and interfacing with external RAM or
other integrated circuits require bit-wise programmability. The CSRC device
architecture has a 4-bit DSP dataflow engine that is also capable of implementing
control logic efficiently.
Figure 3 taken from Scalera and Vázquez [12] shows the microarchitecture of

CSRC, which consists of 16-bit wide data pipes. Each pipe consists of context
switching logic arrays (CSLAs). A single CSLA consists of context switching logic
cells (CSLC) and is capable of processing two 16-bit words and producing a 16-bit
result. The result of one CSLA is available as input to two adjacent CSLAs in the

Figure 3. CSRC architecture.

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 243

pipe. Thus, a pipe can be used as a data path in both directions. This is particularly
useful when a part of the algorithm is implemented as a pipe in one context where
data flows from left to right; and the next context can take the result from the
previous context and processes it from right to left to implement the next part of the
algorithm. The advantage of such a data flow mechanism is that it eliminates the
need to reroute data from its physical origin in one context to its physical input in the
subsequent context.
The CSLC is composed of a four input lookup table (CSLUT), a context switching

flip-flop (CSFF) a tri-state buffer and the carry logic. The carry logic is such that the
carry chain can be connected, disconnected or fed a logic zero or one every four bits.
This enables a pipeline granularity of 4-bits. Each configurable resource in the CSLC,
along with each routing resource, has four configuration bits among which a single
bit is selected as the current configuration; thus achieving four configuration planes.
The CSRAM implements the global sharing scheme used for sharing data between
contexts. Another way of sharing data between contexts is by the private/public
addressable registers. Each CSLC has a private register for each context and a public
register. During a context switch the CSLC value is stored in public register if it is to
be shared or kept in a private register if not. When a context is activated it can select
between its previous value in the private register and the shared public register value.

3. System

Extensive run-time support is required to access the hardware resources on the RCM
platform. The RCM platform has a run-time environment that is specific to its
hardware [13]. The system environment for run-time support is described in
considerable detail in this section. The run-time environment consists of a layered
stack of software. This allows the user to develop applications using the context
switching features of the system. Figure 4 illustrates this run-time stack.
Memory mapped reads and writes over the PCI interface is used for

communication between the RCM platform and the host. Application interfaces
were built on top of the memory-based communication.

Figure 4. Run-time environment stack.

244 PUTTEGOWDA ET AL.

3.1. Host APIs

Hardware resources are accessed by the application either through a high-level
application programming interface (API), low-level API, or a combination of both.
The low-level API is implemented using the ‘‘Raw Access API’’ which provides only
basic services such as opening/closing the board, and reading/writing memory-
mapped areas.
The raw API has no knowledge of the hardware configuration and programmable

resources on the board. It does not access special features of the software running on
PowerPC or any features of configurations loaded in the CSRCs or the FPGA. The
initial setup of software on the PowerPC is done with this raw API, accessed through
a higher level API, and board firmware. The memory controller on the board is
configured to map memory ranges to various devices. This is used to provide some
direct access to the FIFOs and FPGA. Complex communication and control is
implemented with a memory-based handshaking protocol with software on the
Power PC. The ‘‘Low-level API’’ uses this protocol to provide transparent access to
the hardware from the host application. The features of this API include PowerPC
configuration, FPGA configuration, CSRC configuration (basic and caching),
CSRC context switching, and data streaming.
This low-level API is implemented through a basic C API and the ACS API [14].

The C API is suitable for high speed direct access. The ACS API is an interface for
distributed adaptive computing systems. It allows the board to be accessed in a
distributed dynamic network of heterogeneous reconfigurable hardware. In Figure 4
both these APIs are represented by the ‘‘Low-Level API’’ layer. The Xilinx FPGA is
used to control the signals on the board. It manages the CSRC clock, reset, context
switching control, programming control and FIFO status and control. Many CSRC
connections also go through this FPGA. The low-level API does not have
information about how these control is implemented. It simply maps the FPGA
with address, data and control lines. Specific control can be implemented either by
the application programmer or another layer of API using the lowlevel API calls.
The high-level API provides an object-oriented view of the board’s physical parts.

This layer is based on specific features of the FPGA configuration as well as the low
level API features implemented in the RCMOS. This API includes the functionality
needed to take full advantage of the hardware. This provides a high level view of the
system such that applications using it are isolated from many of the details of register
access and bit manipulation. Thus, complex functionality involving many low level
API calls can be wrapped up into an easier to use interface.

3.2. RCMOS

The PowerPC on the board allows flexible programs to be run close to the context
switching hardware. It is used to implement a lot of functionality in the system. All
this is achieved through a mini-operating system called the RCM operating system
(RCMOS). It is used to implement many of the low level API functions in an efficient
manner. Programming the configurable hardware resources would involve bit wise

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 245

data writes which can be slow over the PCI bus. It is achieved in an efficient way by
loading the configurations into the board memory and letting software in the
powerPC do the work. Many of the CSRC control operations such as control-driven
context switching and clocking are also efficiently implemented as software in the
PowerPC so that it runs closer to the hardware than across the PCI bus.

3.3. Configuration caching

To achieve effective run-time reconfiguration fast switching between configurations
is required. In traditional configurable systems, configuration switching latency is
large due to long configuration time and communication latency over the system bus.
The CSRC device with four on-chip contexts provides fast configuration switching.
For applications requiring more contexts than the number of contexts present on the
device, the device is reconfigured during application execution. The average
reconfiguration time in such a system is discussed in Section 5. To eliminate the
communication latency over the system bus configurations are stored on the
PowerPC memory. But it has limited capacity when compared to configuration
storage on system memory. Configuration caching was implemented as a virtual
hardware hierarchy similar to the concept of memory hierarchy. The intention was
to exploit temporal locality in the configuration sequence.
Figure 5 illustrates this configuration caching hierarchy. The on-chip device

configurations are considered as the high speed and low capacity level. It is on top of
the hierarchy. The lowest level of the hierarchy is the configurations stored in mass
storage. This storage can be a host hard disk or remote storage accessed over a
network. Access speed increases and capacity decreases as the configurations move
from mass storage to host memory to RCM board memory to the device contexts. If
a particular level cannot hold the required number of contexts, they are stored in the
next higher capacity level and are loaded on demand. The host uses an API that
stores configurations on board via the RCMOS for board level configuration
caching. The RCMOS keeps track of configurations loaded into contexts on the
device. The application gives a high level request for a particular configuration to be
loaded. If the requested configuration is currently loaded in a context, then switching
is fast. If the requested configuration is not currently on a device context, then

Figure 5. Configuration caching hierarchy.

246 PUTTEGOWDA ET AL.

RCMOS uses standard replacement algorithms to determine the context to be
replaced with the requested configuration.

4. Applications

The context switching hardware system can be utilized in a variety of ways for
building applications. The hardware system, along with the run-time environment,
can efficiently implement applications that are either data-driven or control-driven
run-time reconfigurable. Customized applications can make full use of the available
resources. Application framework environments [13] can also target such a system.

4.1. Application frameworks

The infinite virtual hardware characteristics of context switching reconfigurable
hardware make it attractive for users of some types of application frameworks. One
such framework is Janus [15]. This framework takes a high level description of an
application as input. Along with a description of the target hardware the application
is temporally partitioned. A run-time environment then executes the application
pieces in hardware. Janus can partition the application in any optimal way to adapt
to the hardware. It must only respect ordering and resource requirements specified in
the application description.
This approach works well on reconfigurable computing because the hardware can

be reconfigured for each piece of the application. However, there is a significant
performance degradation due to reconfiguration time. Depending on the application
framework run-time implementation, hardware characteristics, and application
properties; this can range from insignificant to overwhelming computational cost
[15, 16]. Context switching platforms can accelerate application frameworks by
improving performance of their virtual hardware characteristics.

4.2. Application control

Application on the CSRC need specific control logic which is implemented on the
RCM board by logic programd on the Xilinx XC4085. This interface logic can be
embedded as an application specific logic programd into the Xilinx XC4085 FPGA.
This approach leads to a specific programmable bitstream for each application.
Control logic needs to be implemented in a more generic and flexible way by making
it controllable from the host application. One such approach is a host programmable
finite state machine (FSM). It is implemented as a state table-based design as shown
in Figure 6. The state table is implemented as a memory, with the present state
represented by the address for the data which stores the next state variables and the
output values. Combination of this state variable and the inputs provides the address
for the table. The output bits can be programd to be mapped to any line interfacing
with the CSRC. An abstract description of the FSM is converted into this memory-

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 247

based table format by the high level API. This is then loaded into the FPGA with a
protocol of low level register writes. The prototype CSRC parts have limited logic
and routing resources which require external control logic for some applications. The
host programmable FSM allows flexible application control using high speed
hardware available closer to the CSRC devices.

4.3. Context switching control

Context switching is controlled from a number of points in the system. Figure 7
illustrates the path on the RCM board through which the switching control signals
pass. The control signals can be initiated at any of these points. The actual route is
application specific. Applications requiring user input need the full control path from
host to CSRC. Some applications can improve performance by moving this control
closer to the CSRCs. The latency involved in a context switch is directly related to
the number of layers that signals have to pass through. Latency for control from the
host is large. For debugging this communication is used to stall the CSRC logic.
Using such a control mechanism the context switching mechanisms implemented are
discussed in the following sections.

Figure 6. Finite state machine circuit.

Figure 7. Context switching control routes.

248 PUTTEGOWDA ET AL.

4.4. Host-driven context switching

A continuous video stream is processed by filters stored in various contexts. A user
request from the host causes the context to switch. This enables single-cycle
algorithm changes. If more filters are needed than the available contexts on the
device, then the configuration cache is used to store them before configuring them.
Configuration of the inactive contexts takes place while another filter is running in
the active context. Simple filters have been implemented on the CSRCs that include
basic pass through, the motion detection difference filter and a delay filter.

4.5. FSM-driven context switching

In applications requiring external logic to achieve context switching, the host
programmable FSM is programd to control the contexts on the CSRCs. Motion
detection algorithm was implemented to demonstrate this FSM-driven control.

4.5.1. Motion detection algorithm. The motion detection algorithm [17] basically
consists of capturing an image, processing it and sending out a cropped part of
the image where there is motion. Such an application is useful for power critical
remote sensing motion detection. The algorithm mapped onto the system is shown in
Figure 8. The image is captured by the host machine and passed to the RCM board
through the FIFOs. The four parts of the algorithm are implemented as four
different contexts inside the CSRC. The FSM controls the switching of active
contexts. The binary image generated by the CSRC is used to generate the cropped
image by the host machine.

Figure 8. Motion detection application.

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 249

A video capturing card is used for generating a video stream. The video stream
consists of 1606120 8-bit gray scale image sequences. The image data is stored in the
sharable memory between the host PC and the PowerPC on the RCM board. The
image is transferred into the CSRC through the FIFO with two pixels per word.
The difference block enhances the portions of the frame that have changed due to

moving objects. It generates a difference image from two sequential images. Denote
each image frame of the video stream as Ii, where i is the sequence index of the video.
The previous image, Ii�1, is stored in the CSRC A memory. The current image, Ii, is
streamed through the input FIFOs. The difference image, jIi � Ii�1j, is stored back to
the CSRC A memory. The CSRC memory shares the data between the contexts.
Ideally, the difference image should not have any spot noise and only the moving

object on the image should be highlighted as long as the background remains
constant. However, there are many factors that generate small background changes,
such as wind, ground vibration, etc. A low-pass filter eliminates this spot noise and
smoothes out the image. The low-pass filter is implemented as a 565 averaging filter
that reads the differenced image from the CSRC memory.
If the intensity from one image to the next changes, the difference block will also

produce non-zero pixels throughout the difference image. The pixel differences are
compared with a threshold and non-zero pixels due to intensity variations are
detected. Ideally a dynamic threshold value should have been generated. Due to the
lack of resources on the prototype CSRC, a static hard-wired threshold is used
instead of calculating the threshold. With enough resources, this block can be
implemented as a separate context.
The binary image generator block compares the filtered image with the threshold

and generates a binary image with a ‘‘1’’ for pixels above the threshold and a ‘‘0’’ for
those below the threshold. It uses the filtered image stored in the CSRC memory,
generates the binary image and, streams it out through the output FIFO. This binary
image has only the objects that are moved without the spot noise and disturbances
due to intensity variations.
This image can be used to clip only the part of the original image frame where

there is movement.

4.6. Data-driven context switching

Data-driven context switching control is achieved by the data being processed. A
network encryption application where the data packet to be processed contains the
context number to be made active is implemented to demonstrate data-driven
control.

4.6.1. Enigma encryption. The application is basically a demonstration of simple
encryption and decryption of network traffic for multiple channels. As the resources
on the prototype CSRC are limited, a simple Enigma-like encryption scheme was
selected.
The Enigma Machine [18], built in the 1920s by the Germans and used in World

War II, was based on a system of three rotors that substituted cipher text letters for

250 PUTTEGOWDA ET AL.

plain text letters. The rotors spin in conjunction with each other, performing varying
substitutions. A letter typed on the keyboard of the machine is sent through the first
rotor, which shifts the letter according to its present setting. The new letter passes
through the second and third rotor, where it is replaced by a substitution according
to present settings of the second and third rotor. This new letter is bounced off of a
reflector, and back through the three rotors in reverse order. As the plain text letter
passes through the first rotor, the first rotor rotates one position. The other two
rotors remain stationary until the first rotor rotates 26 times (one full rotation). Then
the second rotor rotates one position. After the second rotor rotates 26 times, the
third rotor would rotate one position. This principle of the shifting rotors allows
26626626 ¼ 17,576 possible positions of the rotors. To decode the message, the
rotors are set to the initial settings, and then the cipher text is put through the
machine. This gives the plain text back.
An encryptor/decryptor for bytes was built based on this concept. Each rotor has

28 ¼ 256 slots. The key and the shifting effects of the rotor are realized by adding the
key and offset to the byte and obtaining its modulus for 256. The encryptor
implementation is pipelined, so data returning through the rotors is implemented by
repeating the rotors in the reverse order. The shifting of the repeated rotors is timed
accordingly to match the shifting of the original rotor. The obtained byte is then
scrambled nibble-wise using two 464 tables. The table entries represent the actual
rotor settings.
Using the available RCM prototype board, the following system was implemen-

ted. FIFOs are used to stream data into the processing element. The processing
elements consist of the two CSRCs and the Xilinx support FPGA. Output FIFOs are
used to stream data out of the processing elements. The system design partition is
shown in Figure 9.
Each of the four contexts on the CSRC B contains an enigma encryptor with a

particular rotor configuration and key. The key can be made programmable using
the data in the header. The CSRC A has a controller context on it that reads the
header of the packet, determines the particular encryptor to be used, and the number
of bytes in the packet. This number is stored in a down-counter register. It signals the
support FPGA to set the particular context on the CSRC B. CSRC A’s controller
context now acts as a pass through and down-counts the number of bytes. After the

Figure 9. The Enigma application.

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 251

counter reaches zero, the controller context resets its controller and waits for the next
packet to arrive.

5. Performance analysis

This section discusses the concepts for performance evaluation of the system.
Further evaluations based on the applications are presented in Section 6.

5.1. Average reconfiguration time

Applications that require more contexts than the available number of contexts in the
device store context configurations in external memory and load them on the device
when required. The context switch time in such a system would have a significant
latency if the context is not available on the device. Assuming that each context for
the application has an equal probability of being requested during any context
switch, an expression for the average reconfiguration time, which is the average time
required to switch application contexts, is given by:

tavg ¼ ts if 1 < n � k
psts þ pctc if n > k,

�
ð1Þ

where, tavg ¼ average switching time, ts ¼ context switch time, tc ¼ context config-
uration time, k ¼ number of device contexts, n ¼ number of application contexts,
ps ¼ probability that context is on the device, k� 1=n� 1 and pc ¼ probability of a
reconfigure, 1� k� 1=n� 1.
Figure 10 is a plot of the average reconfiguration time against the number of

application contexts for different number of device contexts. The plot shows that for
an increase in the number of device contextsðkÞ from one to four and from four to
eight there is a significant reduction in the average reconfiguration time ðtavgÞ.
Adding a new context would involve adding new RAM cells for context storage,
multiplexers and the necessary routing for each configurable resource. The combined
area of these resources exceeds the area of the programmable part itself. So the VLSI
area increases linearly with the number of contexts on the device. Hence there is
diminishing returns of reduced reconfiguration time for more device contexts. It can
also be seen that a match between the number of application contextsðnÞ and the
number of device contextsðkÞ results in a shorter average switching timeðtavgÞ. This is
intuitive as most of the times an application context requested will be in the device in
such a case. For very high number of application contexts the curves come closer.
This implies that when there are many application contexts the advantage of having
more device contexts to reduce average switching time is smaller. This plot illustrates
a worst case situation with no locality-of-reference in the requested context sequence.
With such a switch request, the probability that the context requested is on the device
will be higher than k� 1=n� 1; thus the average context switch time would be lesser

252 PUTTEGOWDA ET AL.

than that observed in the plot. This locality-of-reference depends on the applications
and the way they are programmed.
A context can also be configured in the background while another context is

processing data. This would reduce the effective context program(configuration)
time and hence the average reconfiguration time. The new configuration time is given
by Equation (1)

tac ¼
ts if tc � texc

tc � texc if tc > texc,

�
ð2Þ

where, tac ¼ configuration time adjusted for background configuration, ts ¼ context
switch time, tc ¼ context configuration time and texc ¼ context execution time after
the next required context is determined
For applications in which the next active context cannot be determined until the

present context is executed, texc will be zero and Equation (2) reduces to tac ¼ tc. In
applications with a known sequence of contexts to be made active texc will be the
actual context execution time. If this is less than tc, the average reconfiguration time
is just ts. This capability can be utilized in applications that can anticipate the next
context required. With these techniques the reduced average reconfiguration time
will help the total application execution time to approach the time required for
processing data alone.

6. Results

An analysis of costs and benefits in terms of area and bitstream size for multi-context
approach for run-time reconfigurable systems was done. This section discusses the

Figure 10. Plot of average reconfiguration time.

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 253

results of the analysis based on the applications mapped to the experimental context
switching platform.

6.1. Area

Reusability of area for emulating infinite hardware is one of the strongest argument
in favor of multi-context devices. To assess this claim, a study of area requirement
for the applications was performed.
The gate equivalent areas obtained from Synplify for the applications

implemented in a single-context and in the four-context device are shown in Table
1. The table shows the area counts in each context for the application in the four-
context implementation. For implementing an application in a multi-context device,
each context is expected to have an area count of the highest number among its
individual context area requirement. Motion detection application can be
implemented in a three-context device with a minimum of 1,188.8 equivalent gates
without incurring any delay in reconfiguration. But with only a single context, the
application requires a device with 2,055.0 equivalent gates. For the Enigma
encryption we see that in a four-context implementation we require at least 1,331.8
equivalent gates for each of the Enigma engines. In a single-context implementation
of all four Enigma engines bound together the application requires at least a 5,245.0
equivalent gate device.
Based on these results it can be inferred that for applications that can be

partitioned equally among all the available contexts resource requirement will scale
well with the number of contexts on the device. It should be noted that in this study
the silicon real estate overhead of adding more contexts is not considered
quantitatively.

6.2. Bitstream size

This section presents an analysis of the effect of context switching strategies on the
bitstream sizes for the application. This directly affects the storage resource

Table 1. Area requirement for each application. Second column shows the area

requirement for each context of application in a multi-context device

Application 4-context implementation 1-context implementation

Motion

Detection

Algorithm

Difference 783.0

Filter 1,188.8 2,055.0

Bin. image gen. 253.3

Enigma

Encryption

Enigma0 1,331.8

Enigma1 1,331.8 5,245.0

Enigma2 1,331.8

Enigma3 1,331.8

254 PUTTEGOWDA ET AL.

requirements and configuration time. Table 1 shows that a motion detection
algorithm implemented in three-contexts will have bitstreams for three contexts of a
1,188.8 equivalent gate device and the single context will have bitstream for a single
2,055.0 equivalent gate context. In the Enigma encryption application, storage
requirements for the bitstreams are much more similar and scale well with the
number of contexts. With this observation it might seem that context switching on a
multi-context device leads to larger bitstreams. But if we consider larger applications
that require run-time reconfiguration, the multi-context approach is scalable better
than a single context device of the same capacity. This is observed by mapping the
motion detection algorithm on devices with less than three device contexts. In a two
context device the inactive context can be loaded with the configuration for the next
part of the algorithm to achieve seamless execution. A similar capacity single context
device would hold two contexts of the algorithm in its single available context. These
two approaches are indicated in Table 2.
Table 2 shows equivalent gate requirements for the motion detection algorithm

implemented in different number of application contexts. As bitstream size is
dependent directly on the area, these numbers indicate the bitstream size required for
each context. The first implementation shows a three context implementation with a
highest area of 1,188.8 equivalent gates, so if the application is implemented in a
device with 1,188.8 equivalent gates per context, the total bitstream size required will
be for around 1,188:863 ¼ 3,566:4 equivalent gates. The second implementation
requires a 1,973.1 equivalent gate per context device and the total bitstream size
required will be for 1,973:162 ¼ 3,946:2, which is much higher than in the first
implementation. Supposing more contexts are added to the image processing
algorithm implementation, bitstream length scales at 1,188.8 equivalent gate steps in
a multi-context device rather than 1,973.1 equivalent gate steps. This shows that
having a greater number of smaller contexts is better in terms of performance if the
application can afford the higher effective reconfiguration time.

7. Conclusions

Context switching is advantageous for applications that require only a part of the
hardware at a particular time. Applications which efficiently map to such a device
should also partition into parts that require almost the same area in terms of gate
equivalents. To run such applications seamlessly, context switching must occur
quickly. The CSRC device has the capability of switching context in a single clock
cycle. The system achieves context switching with various degrees of speed and

Table 2. Area requirement for motion detection

application for different number of application contexts

3-context implementation 2-context implementation

Difference 783 Diff & filter 1,973.1

Filter 1,188.8

Bin. img. gen. 253.3 Bin. img. gen. 253.3

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 255

controllability. The system also supports the loading of a particular context on the
system when a different context is processing data. In the case of run-time
reconfiguration, this means that enough time is available to load contexts in the
background. This feature, along with the hardware cache, implements an effective
hierarchy of virtual hardware. Control of all these requires complex external support
such as that provided by the Xilinx support FPGA in the RCM system.
The analysis presented here indicates that a multi-context approach for run-time

recon- figuration helps effective virtual hardware implementation. Although the
approach does not indicate significant savings in terms of silicon real estate when
compared to conventional RTR approaches, it increases the application scalability
of the RTR system. This can effectively help in development of more generalized
RTR systems that can implement a variety of applications with reduced application
development effort. This approach is advantageous when the application is divided
efficiently for the resources.
Application are implemented in an effectively smaller area on a multi-context

device than on a single context device. This has several positive effects on the overall
system design. The routing inside the chip is reduced, because the effective area to
which a design is mapped is smaller; thus interconnect delays are smaller. It would be
interesting to study the reduction in computational load for a routing tool when the
application is divided into smaller contexts. The possibility of performing partial
reconfiguration on multi-context devices will add another dimension to the
scalability of the system. It could be an interesting and a worthwhile research
approach to explore in future.

References

1. Xilinx Inc. The Programmable Logic Data Book, San Jose, CA, 1999.

2. Xilinx, Inc. XC6200 Advance product information, 1996.

3. G. Brebner. A virtual hardware operating system for the Xilinx XC6200. In Proceedings of 6th

International Workshop on Field Programmable Logic and Applications, pp. 327–336. Springer, 1996.

4. X.-P. Ling and H. Amano. WASMII: A data driven computer on a virtual hardware. In Proceedings

of IEEE Workshop on FPGAs for Custom Computing Machines, April 1993.

5. Y. Shibata, M. Uno, H. Amano, K. Furuta, T. Fujii, and M. Motomura. A virtual hardware system

on a dynamically reconfigurable logic device. In Proceedings of IEEE Symposium on FPGAs for

Custom Computing Machines, April 2000.

6. A. DeHon. DPGA utilization and application. InMIT Artificial Intelligence Laboratory, Transit Note

129, September 1995.

7. A. DeHon. DPGA-coupled microprocessors: Commodity ICs for the early 21st century. In

Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pp. 31–39, 1994.

8. Xilinx. Time multiplexed programmable logic device. Patent no. 5646545, July 1997.

9. Xilinx. Configuration modes for a time multiplexed programmable logic device. Patent no. 5600263,

February 1997.

10. S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed FPGA. In Proceedings of

IEEE Symposium on FPGAs for Custom Computing Machines, April 1997.

11. Chameleon Systems, Inc. CS2000 reconfigurable processor. CS2000 Advance product information,

2000.

12. S. M. Scalera and J. R. Vázquez. The design and implementation of a context switching FPGA. In

Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines, April 1998.

256 PUTTEGOWDA ET AL.

13. D. I. Lehn. Application framework for a context switching runtime reconfigurable system. M.S. thesis,

Virginia Polytechnic Institute and State University, Blacksburg, Virginia USA, April 2002.

14. M. Jones, L. Scharf, J. Scott, C. Twaddle, M. Yaconis, K. Yao, P. Athanas, and B. Schott.

Implementing an API for distributed adaptive computing systems. In Proceedings of the IEEE

International Conference on Communications, pp. 222–230, April 1999.

15. R. D. Hudson. Architecture-Independent Design for Run-Time Reconfigurable Custom Computing

Machines, Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

USA, August 2000.

16. R. D. Hudson, D. I. Lehn, and P. M. Athanas. A run-time reconfigurable engine for image

interpolation. In Proceedings of IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 88–95, April 1998.

17. N. Vaswani and R. Chellappa. Best view selection and compression of moving objects in IR

sequences. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing

Proceedings, Salt Lake City, Utah, 2001.

18. Deutsches Museum. Enigma encryption machine. http://www.deutsches-museumbonn.de/ausstellun-

gen/meisterwerke/2_3enigma/ enigma_e.html.

19. M. Bolotski, A. DeHon, and T. Knight. Unifying FPGAs and SIMD Arrays. In Proceedings of the

1994 IEEE Workshop on Field Programmable Gate Arrays, IEEE Computer Society Press, Napa

California, February 1994.

CONTEXT SWITCHING IN A RUN-TIME RECONFIGURABLE SYSTEM 257

