
A Run-Time Reconfigurable Engine for Image Interpolation

Rhett D. Hudson, David I. Lehn and Peter M. Athanas
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, Virginia 24061-0111
rhudson@vt.edu

Abstract

Custom Computing Machines (CCM’s) have
demonstrated significant performance advantages
over general-purpose processors for certain
classes of problems. However, problems can
always be found which require computational
resources in excess of those available on a
particular CCM. Exploiting the reconfigurable
nature of FPGAs can alleviate this limitation.
The FPGAs’ computational resources can be time
multiplexed to allow different portions of the
computation to execute in stages. Intermediate
results are saved to memory and passed on to
later stages of the computation. This technique is
used in this work to implement an image
interpolation engine on the Xilinx XC6264
Reference Board. The engine utilizes 2-5-2
splines to take advantage of their computationally
convenient powers-of-two arithmetic.

1 Introduction
Most early work in the FPGA-based computing
field has dealt with platforms that provide the
ability to rapidly prototype application specific
hardware. This form of computation follows the
traditional design techniques adopted by the ASIC
community. In fact, most commercial FPGA
design tools are ASIC design tools that were
simply retargeted from VLSI cell libraries to
support similar libraries of primitives for FPGAs.
These rapid prototyping platforms configure their
FPGAs once. That configuration is used
throughout the execution of an application. The
obvious limitation of this approach is that one can
always conceive of a problem that requires more
resources than are available on a given computing
array.

While silicon-based ASIC solutions must adopt
this kind of static design, applications based on
the inherently flexible FPGA do not. Computing
solutions that utilize the dynamic nature of
FPGAs are called run-time reconfigurable (RTR)
solutions. RTR applications solve the scalability
problem of traditional rapid prototyping
techniques by adopting a divide and conquer
approach. Large problems are broken down and
partitioned temporally into stages, each of which
fits onto the array. The first stage receives input
data, performs computations and stores the results
into a memory. The array is then reconfigured for
the next stage, which computes results based on
the outputs of previous stages. This process is
then repeated until all the required stages have
executed and the final results are available. Using
these techniques, the size of a problem that an
RTR application can solve is limited only by the
size of the memory required to store intermediate
results and possible latency requirements.

XV6264

128K X 4
SRAM

Host PC

128K X 4
SRAM

P
C

I
B

U
S

Figure 1: Reference Board.

The efficiency of these systems is dependent on
the amount of time the platform spends doing
useful computations. Time spent reconfiguring
the FPGAs and reordering the intermediate results
is lost as overhead. Consequently, each
reconfiguration has a cost in terms of efficiency
and performance. Ideally, the time spent
reconfiguring should be negligible with respect to
the time spent computing.

This work examines the implementation of a
spline-based image interpolation engine. Image
interpolation has a variety of uses, including
image compression and high fidelity home theater
systems. The interpolation engine was
implemented on the Xilinx XC6264 Reference
Board. Figure 1 presents a block diagram of the
Reference Board depicting the interconnection of
the host, on-board memory and the XC6264.

The next section explains the theory of the 2-5-2
splines used by the image interpolator. Following
that, Section 3 explains the general approach of
temporal partitioning for run-time reconfiguration.
The fourth section covers some of the
implementation details and the fifth section looks
at the performance of the engine. Section 6
compares the interpolator engine with commercial
implementations. The final section presents some
conclusions.

2 Background

The theoretical basis for the image interpolator
process was taken from [FerP97]. The procedure
increases the resolution of an image by
interpolating new pixels between the existing
ones. Typically, this kind of interpolation is done
with cubic splines, but the computational
requirements of that method are prohibitive for
real-time applications. Furthermore, floating
point arithmetic is typically needed to maintain
acceptable resolution. Bilinear interpolation is a
computationally tractable solution, but the
resulting image quality is unacceptable for many
applications. The 2-5-2 spline approach presented

in [FerP97] provides results of acceptable quality
with roughly the same computational complexity
as the bilinear approach.

The 2-5-2 spline matches the lower computational
complexity of the bilinear approach by choosing
its spline basis so that the coefficients in the
computation of the spline are powers of two.
Since multiplication and division by powers of
two can be implemented with low-resource
extremely fast shift units, computation of 2-5-2
splines is dramatically faster and less resource
intensive than other methods. The very nature of
the arithmetic makes it well suited for FPGA
implementations.

The interpolation procedure is broken down into
two parts: the inverse filter (IF) and the Fast
Spline Transform (FST). Both computations must
be performed in two dimensions, i.e. on both the
rows and the columns of the image. Calculations
in both directions require pixels from only one

ΣΣ

Z-1 Z-1 Z-1 Z-1Z-1

1

2n-1

-1

2n-2

1

20

1

2n-1

-1

2n-2

Vn

Pn

Figure 2: The Inverse Filter [FerP97].

Z-1

Impulse

h3

h4

+

1

r
+

1

r
+

1

r
+

1

r

Vn

Sn

Figure 3: The Fast Spline Transform [FerP97].

row or column at a time. The computation can be
performed on the rows first and then the results
from that computation can be used in the column
calculation. The inverse filter takes the original
image and calculates the spline vertices according
to the following:

where n varies from one to the number of pixels
in a row or column and Pk’s for k<1 and k>m are
zero. This process is diagrammed in Figure 2.

The output from the vertex calculation is an image
that is approximately the same size as the input
image. The vertex calculation has some edge
effects that make the image slightly larger than
the original. This image is expanded to a higher
resolution by introducing some number of new
pixels between the spline vertices. The FST phase
takes the spline vertices and uses 2-5-2 spline

arithmetic to interpolate values for the new pixels.
This procedure is diagrammed in Figure 3. The
result is an image with higher resolution than the
original.

3 Approach
The implementation of the image interpolation
process is an excellent example of using RTR
methods to map a large calculation onto the
relatively small Xilinx Reference Board. The
mapping process began with an analysis of the
interpolator’s computational structure.

The authors of [FerP97] demonstrated their
interpolation engine using MatLab. Based on
their MatLab code, a C++ based engine was
created that implemented the interpolator using
integer arithmetic. The C++ engine was used to
verify the procedure using integer math and to
determine the bit precision required to achieve
acceptable quality in the output image.

3.1 Computational Structure of Image
Interpolation

Figure 4 illustrates the computational structure of
the image interpolation process. Each gray circle
represents either a row or column in the working
image. The rows and columns of the inverse filter
are mutually dependent on each other. In other
words, all the columns must be computed before
any of the rows can be computed or vice versa.
Whether the rows or the columns are computed
first is not significant. The rows and columns of
the Fast Spline Transform are also mutually
dependent. In addition, the diagram indicates the
FST is completely dependent on the results of the
IF. All the rows and columns of the IF must be
computed before any of the rows or columns of
the FST can be computed.

The diagram also exposes inherent parallelism in
the computation. For both the IF and the FST,
each row is independent of all the other rows and
each column is independent of all the other
columns. This allows simultaneous calculation of
any number of rows or any number of columns.

∑
+

−=

−

−=

ln

lnk
k

nk

n PV
2
1

Input Image

Output Image

Inverse Filter

FST

lll

lll

lll

lll

Rows

Rows

Columns

Columns

Figure 4: Computational Structure of
Image Interpolation.

3.2 Temporal Partitioning
Once the computational structure is understood,
temporal partitioning can take place. Since the
XC6264 does not have the resources required to
implement the entire computation, the required
hardware must be partitioned into different stages
that can be loaded and executed sequentially on
the platform.

The analysis of the computational structure
indicates that the entire IF calculation must be
performed before any of the FST calculation can
be performed. The division between IF and the
FST is an obvious candidate for a partition
boundary. Within both the IF and the FST, no
column can be computed until all of the rows have
been computed. This is also a natural choice for a
partition boundary. These decisions leave us with
four partitions: IF rows, IF columns, FST rows
and FST columns. Further partitioning might be
necessary if the FPGA resources required by the
computations in each of these partitions exceeds
those available on the platform. Alternatively, if
the resources required represent a fraction of the
available resources, then the required hardware
may be duplicated within a partition to take
advantage of the parallelism discovered in the
computational structure. The exact choice of
partitions and parallelism cannot be made until
some implementation decisions have been
reached.

4 Implementation

The image interpolation engine was designed
using the VHDL Elaborator [GraD98] and the
Xilinx XACTstep Series 6000 Tools [Xili96].
These tools were chosen based on availability and
familiarity. Other tool suites for end-to-end
development of XC6200 designs are available.
The Oberon-based Trianus system is one example
[GehL96].

The interpolation engine was coded in structural
VHDL with hardware specific attributes to guide
the place-and-route tools during the creation of

the physical design. The VHDL Elaborator
produced an EDIF netlist of Xilinx Unified
Library components from the VHDL code. The
XACTstep Series 6000 tools were then used to
place-and-route the EDIF netlist for
implementation on the XC6264.

4.1 Software
The only Xilinx tools available during the design
effort were still in the developmental stage. The
VHDL Elaborator worked well converting
structural VHDL into EDIF netlists. Recent
versions have included an extensive selection of
parameterized components that would have been
very helpful had they been available in the early
stages of the design.

The XACTstep Series 6000 place-and-route tools
were, generally, incapable of producing layouts
with reasonable compactness and low critical
paths. Most components had to be placed by
hand. This was done using a combination of the
XACTstep layout editor and location attributes
attached to components in the VHDL. VHDL
attributes were used frequently for datapath
construction, but were not practical for irregular
modules, such as the control unit.

4.2 Engine Architecture
Most of the arithmetic in the interpolation engine
is done serially. The driving force in the decision
to use serial arithmetic was the XC6200 routing
architecture. Serial arithmetic favors local
complexity over global control. In the chosen
serial implementation, only two nets need to be
routed between arithmetic units. One line is the
serial data line and the other is a control line that
indicates when the most significant bit of a
computation is present. This scheme dramatically
lowers the number of nets that must be routed a
significant distance across the FPGA. Resource
requirements for serial arithmetic are also lower
than for parallel arithmetic allowing larger
designs to fit onto the platform.

The interpolation engine was designed to translate
a 128x128 eight-bit image into a 512x512 eight-
bit image. The original image is loaded into one
of the Reference Board’s two banks of SRAM.
Each RTR stage of the engine reads the input
image from one bank and writes its results into the
other bank. The next stage then reads its input
image from the bank that was the output bank of
the previous stage. Pixels are stored as words in

the external SRAM. The interpolator’s memory-
control unit performs parallel-to-serial conversion
while reading operands from memory and serial-
to-parallel conversion while writing operands to
memory.

Internally, the interpolation process uses a 32-bit
fixed-point representation. Since the arithmetic is
done using serial techniques, the size of the word
does not have an adverse effect on the size of the
computational units. Width of the word does,
however, increase the latency of the computation.

The IF computation can be implemented as a FIR
filter. The implementation of a single tap of the IF
requires approximately 72 of the XC6200’s
functional units (FUs). The IF implementation
requires 31 32-bit filter taps, which is
approximately 2,232 FU’s. There are 16,384 FUs
available on a XC6264, which leaves room for
exploitation of the row and column parallelism in
the computation. Allowing for the overhead of an
address generation unit, parallel-to-serial
conversion and the tool-imposed need to hand
place the taps, four IF units can be implemented
on an XC6264. The floorplan for the layout of the
IF unit is shown in Figure 5.

The FST computation can be implemented using
two of the 20-tap FIR filters and four cumulative
sum units. Seven of the taps in the FST filters
require multiplies by numbers that are not powers
of two. These taps are implemented using a shift
and add operation. They require approximately
144 FUs each. There are twelve taps that are
multiplies by powers of two; they require 72 FUs
each. Twenty-one of the filter taps are multiplies
by zero, which only require 48 FUs. There are
four cumulative sum units that require 48 FUs and
five division units that require 72 FUs. The total
requirement for an FST unit is 3,720 FUs. Again,
with overhead for address generation, parallel-to-
serial conversion and the limitations of the tools
for automatic placement, two FST units can be
implemented on the XC6264. The floorplan for
the layout of the FST unit is shown in Figure 6.

Figure 6: FST Floorplan

Figure 5: IF Floorplan.

4.3 Partial Reconfiguration
One of the methods used by RTR application
designers to reduce configuration overhead is
partial reconfiguration. Partial reconfiguration
requires hardware support on the FPGA. The
XC6200 series devices provide this capability.

When two subsequent stages of an RTR CCM
application have similar structures, some of the
hardware already loaded onto the CCM may be
reused in the next stage. Each FU from a previous
stage that does not need to be reconfigured for the
next stage represents less configuration
information that has to be sent from the host to the
FPGA. This reduces the time that is required to
reconfigure the device.

The column and row computations for both the IF
and the FST are very similar. In fact, they are
identical except for minor changes in the address
generation circuitry required to read the pixels
from memory in a different order. Since these
configurations are so similar there is a savings in
performing a partial reconfiguration.

Shirazi’s CalDiff tool [LukS97] was used to create
the partial configurations. The CalDiff tool can
analyze two full configuration files and compute
the fastest partial reconfiguration between the
two.

5 Results
Limitations of the tools and the Xilinx Reference
Board have caused some serious problems in the
performance of the actual implementation. The
pre-release version of the automated place-and-
route tool proved inadequate for circuits of
significant complexity. This necessitated hand
placement of almost all the components in the
final design. The layout of the reference board
places the data and address pins to the external
memories on opposite sides of the die. Just
routing control signals from one side of the chip
to the other can easily account for 75% of the
critical path. While hand placement of the
computational units can result in pipelined serial

units with a critical path on the order of 30 ns,
routing the control signals for the memory control
unit across the chip causes the critical path to
grow to around 120 ns. It would be possible to
resolve some of these issues by meticulous hand
placement of the control and address generation
circuitry coupled with a scheme for pipelining the
routing delay across the chip. In general,
however, it would have been useful to have some
other facility for performing address generation.
A XC4000 series part coupled close to the
memory would have provided the speed required
to implement the memory interface.
Consequently, the results presented here are based
on the timing requirements of the computational
units rather than the configuration as a whole.

5.1 Computational Performance
According to the place-and-route tool, the critical
path through the computational circuitry has a
delay of 33 ns, allowing the engine to be clocked
at a maximum rate 30 MHz. The interpolation
algorithm requires 32-bit precision to achieve
results of acceptable quality. Internally, the
engine utilizes bit-serial arithmetic operators.

The IF unit is entirely pipelined with a latency of
approximately 500 clocks. When compared with
the approximately half-million clocks required to
compute an output image, the pipeline latency can
be safely neglected from performance
calculations. The IF unit can, on average,
compute one output pixel every 32 clocks.

The circuitry that resets the IF pipeline between
the rows and columns of the image does so by
inserting zero-valued pixels into the pipeline.
These extra pixels make the effective size of the
input image 144x128. With a 33 ns clock and a
32 clock latency between outputs, each IF unit can
produce an output pixel once every 1.1 µs. There
are four such units operating in parallel. That
gives an effective time of 267 ns between each
output pixel. Given that the image contains
18,432 pixels, the IF row configuration requires
4.91 ms to compute an entire output image. The

IF column configuration is computationally
identical and requires an additional 4.91 ms.

The FST unit contains two 20-tap FIR filter units
that run in parallel and are serially connected to
four cumulative multiply and sum units. Like the
IF, the FST is a fully pipelined serial arithmetic
unit. The latency through the FST is shorter than
that through the IF, and the size of the input image
is larger than that for the IF. Once again, the
latency through the FST unit is negligible. The
FST can be accurately modeled as producing one
output pixel for every 32 clocks.

The critical path through the FST has a 33-ns
delay. The effective image size, including extra
pixels for resetting the pipeline, is 522x128 for the
rows and 522x512 for the columns. There are only
two FST units operating in parallel, so the time
between output pixels for the FST configuration is
533 ns. The times to process a 66,816-pixel
image and a 267,264-pixel image are therefore
35.64 ms and 142.54 ms, respectively.

The sum of each of the times for the various

stages, momentarily setting aside the overhead for
reconfiguration, results in a 188-ms latency for
each frame. This translates to approximately 5
frames per second. The algorithm scales perfectly
up to eight XC6264s operating in parallel. The
performance would increase linearly from 5
frames per second using one XC6264 to 40
frames per second for eight chips.

5.2 Reconfiguration Overhead
To be practical, RTR systems must insure that the
time spent performing reconfiguration is
negligible with respect to the time spent
performing calculations. If the system is
reconfigured too frequently, more time is spent
reconfiguring than calculating useful results. The
time wasted performing reconfiguration is called
reconfiguration overhead.

The four configurations used in the image
interpolator were analyzed using CalDiff. The
first stage of the image interpolation process
requires 11,465 address-data pairs to be written to
the XC6264. These writes are performed across
the 33 MHz PCI bus, which results in a total
configuration time of 347 µs. The configuration
from the row stage of the IF computation to the
column stage of the IF computation requires less
time, because only the address generation and
control circuitry needs to be updated. The
computational core of the configuration does not
need to change. This reconfiguration requires
only 1,483 address-data pairs or 44 µs.

The reconfiguration from the IF unit to the FST
unit is large since the two overlays have no
circuitry in common. It requires 8,228 address-
data pairs or 249 µs. The reconfiguration from
the first stage FST calculation to the second stage
FST calculation is much smaller because the two
configurations share the core computation
circuitry. This configuration only requires 1,367
address-data pairs, or 41 µs.

The four configuration’s total reconfiguration
overhead sums to 682 µs. That represents a

IF Row Computation
4.91 ms

IF Column
Computation

4.91 ms

44 υs

24
9

υs

41 υs

34
7

υs

FST Row Computation
35.64 ms

FST Column
Computation
142.52 ms

Figure 7: Reconfiguration Cycle.

reconfiguration overhead of 3.6%, which can be
neglected when compared to the overall
computation time. Therefore, in this particular
application, the overall cost of switching between
overlays is overshadowed by the core
computation. The cycle of reconfiguration is
diagramed in Figure 7.

6 Comparison with Other Methods
The RTR techniques presented here may compare
favorably to commercial image interpolators. The
Runco SC-4200 [Runc98] uses custom ASICs to
perform image interpolation for home theater
systems. The SC-4200 is a rack-mounted unit that
draws 65W during normal operation. The SC-
4200’s image interpolation algorithm is also
significantly more complex than the one presented
here. It retails for around $25,000. Its low
production volume may make the use of off-the-
shelf FPGA technology superior to its use of
custom ASICs.

7 Conclusions
The image interpolation procedure is an excellent
application for demonstration of RTR principles.
The computational structure of the calculation has
distinct temporal boundaries and exhibits
parallelism within partitions. The large amount of
input data required for each stage requires enough
compute time that the reconfiguration overhead
can be safely neglected. Even though the
overhead is negligible, the engine also
demonstrates the benefits of partial
reconfiguration through dramatic reduction of
configuration time for similar computational
stages.

8 References

[BurD97] J. Burns, A. Donlin, J. Hogg, S. Singh
and M. de Wit, “A Dynamic Reconfiguration
Run-Time System,” in the IEEE Symposium
on FPGAs for Custom Computing Machines,
Napa, CA, pp. 66-76, April 1997.

[FawW96] B. Fawcett and J. Watson, “FPGA
Applications in Digital Video Systems,”
Proceedings SPIE Workshop on High-Speed
Computing, Digital Signal Processing, and
Filtering Using Reconfigurable Logic, Boston
MA, pp. 283-294, November 1996.

[FerP97] Ferrari, Leonard A. and Jae H. Park,
“An Efficient Spline Basis for Multi-
Dimensional Applications: Image-
Interpolation”, IEEE International Symposium
on Circuits and Systems, vol. 1, pp. 757-760,
1997.

[GehL96] Stephan Gehring and Stefan Ludwig,
“The Trianus System and Its Application to
Custom Computing”, 6th International
Workshop on Field-Programmable Logic and
Applications, Darmstadt, Germany, September
1996.

[GraD98] Douglas M. Grant, Velab Release
Notes, Xilinx Inc., http://www.xilinx.com
/apps/velabrel.htm, 1998.

[HadH95] J. Hadley and B. Hutchings, “Design
Methodologies for Partially Reconfigured
Systems,” Proceedings IEEE Symposium on
FPGAs for Custom Computing Machines,
Napa, CA, pp. 78-84, April 1995.

[LukS97] Wayne Luk and Nabeel Shirazi,
“Compilation Tools for Run-Time
Reconfigurable Designs”, IEEE Symposium
on FPGAs for Custom Computing Machines,
Napa California, April 16-18, 1997, pp. 56-65.

[Runc98] Runco Inc., Super IDTV II SC-4200
Specifications, http://www.runco.com/
sc4200specs.html, 1998.

[Xili95] Xilinx Incorporated, XC6200 Field
Programmable Gate Arrays, 1997.

[Xili96] Xilinx Incorporated, XACTstep Series
6000 User Guide, 1996.

